- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Liao, Enhui (1)
-
Resplandy, Laure (1)
-
Wan, Xianhui Sean (1)
-
Ward, Bess (1)
-
Yang, Fan (1)
-
Zhao, Yangyang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The northern Indian Ocean is a hotspot of nitrous oxide (O) emission to the atmosphere. Yet, the direct link between production and emission of O in this region is still poorly constrained, in particular the relative contributions of denitrification, nitrification and ocean transport to the O efflux. Here, we implemented a mechanistically based O cycling module into a regional ocean model of the Indian Ocean to examine how the biological production and transport of O control the spatial variation of O emissions in the basin. The model captures the upper ocean physical and biogeochemical dynamics of the northern Indian Ocean, including vertical and horizontal O distribution observed in situ and regionally integrated O emissions of 286 152 Gg N (annual mean seasonal range) in the lower range of the observationābased reconstruction (391 237 Gg N ). O emissions are primarily fueled by nitrification in or right below the surface mixed layer (57%, including 26% in the mixed layer and 31% right below), followed by denitrification in the oxygen minimum zones (30%) and O produced elsewhere and transported into the region (13%). Overall, 74% of the emitted O is produced in subsurface and transported to the surface in regions of coastal upwelling, winter convection or turbulent mixing. This spatial decoupling between O production and emissions underscores the need to consider not only changes in environmental factors critical to O production (oxygen, primary productivity etc.) but also shifts in ocean circulation that control emissions when evaluating future changes in global oceanic O emissions.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
